If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+36t+9=0
a = -16; b = 36; c = +9;
Δ = b2-4ac
Δ = 362-4·(-16)·9
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{13}}{2*-16}=\frac{-36-12\sqrt{13}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{13}}{2*-16}=\frac{-36+12\sqrt{13}}{-32} $
| x=-x-312 | | -2+7=x | | 0.8t^2-24t+90=0 | | 2x-4/2=-2 | | 5x+21(x-3)=119 | | 202=46-u | | 10=z=6 | | 104-w=230 | | 3-5x=3x+2 | | 16*2-30x=90 | | 4(x+6)+6=15+7x | | 4x+2(3+2x)=-6 | | 5h-12=23 | | -38-7w=17-12w | | 2/3a-5=6 | | 8y+11=3(y-3) | | 2/8=9/x | | -6x^2-32x=0 | | 2(x+1)+7=3 | | -5x+7+6x=-22+1 | | (-x+2)^2=169 | | -5(x–10)=35 | | -8.1=4.7+v/8 | | 3x-4=8x+2 | | -2q^2+4q-2=0 | | 2/5x+4=-2 | | 3m+6=20 | | 5x-6=10x+11 | | 6(n+4)=–18 | | -4+5x+13=49 | | (3x+4)(5x+1)=0 | | 6√x=294 |